5 research outputs found

    Cellular neural networks for motion estimation and obstacle detection

    Get PDF
    Obstacle detection is an important part of Video Processing because it is indispensable for a collision prevention of autonomously navigating moving objects. For example, vehicles driving without human guidance need a robust prediction of potential obstacles, like other vehicles or pedestrians. Most of the common approaches of obstacle detection so far use analytical and statistical methods like motion estimation or generation of maps. In the first part of this contribution a statistical algorithm for obstacle detection in monocular video sequences is presented. The proposed procedure is based on a motion estimation and a planar world model which is appropriate to traffic scenes. The different processing steps of the statistical procedure are a feature extraction, a subsequent displacement vector estimation and a robust estimation of the motion parameters. Since the proposed procedure is composed of several processing steps, the error propagation of the successive steps often leads to inaccurate results. In the second part of this contribution it is demonstrated, that the above mentioned problems can be efficiently overcome by using Cellular Neural Networks (CNN). It will be shown, that a direct obstacle detection algorithm can be easily performed, based only on CNN processing of the input images. Beside the enormous computing power of programmable CNN based devices, the proposed method is also very robust in comparison to the statistical method, because is shows much less sensibility to noisy inputs. Using the proposed approach of obstacle detection in planar worlds, a real time processing of large input images has been made possible

    Automatische Hinderniserkennung im fahrenden Kraftfahrzeug

    Get PDF
    Im Rahmen dieser Arbeit wurde untersucht, inwieweit eine Bewegungsschärzung aus monokularen Bildsequenzen von Straßenverkehrsszenen und eine darauf aufbauende Hinderniserkennung mit Hilfe von statistischen oder neuronalen Methoden realisiert werden kann. Bei dem zugrunde liegenden mathematischen Modell wird angenommen, daß die Umgebung, in der sich ein Fahrzeug bewegt, im wesentlichen eben ist, was für Verkehrsequenzen in guter Näherung erfüllt ist. Im ersten Teil dieser Arbeit wurde ein statistisches Verfahren zur Bewegungsschätzung vorgestellt und diskutiert. Der erste Schritt dieses Verfahrens stellt die Generierung eines sogenannten Markantheitsbildes dar, in welchem Objektkanten und Objektecken visuell hervorgehoben werden. Für die daraus resultierende Liste von markanten Bildbereichen werden anschließend unter Verwendung einer sogenannten Verschiebungsvektorschätzung, Korrespondenzen im zeitlich folgenden Bild ermittelt. Ausgehend von dem resultierenden Verschiebungsvektorfeld, werden in dem nächsten Schritt des Verfahrens die Bewegungsgrößen ermittelt, also die Rotationsmatrix und der Translationsvektor des Fahrzeugs, beziehungsweise der Kamera. Um abschließend eine Hinderniserkennung realisieren zu können, erfolgt unter Verwendung der Bewegungsgrößen eine Bewegungskompensation der Bilddaten. Bei einer solchen Bewegungskompensation wird unter Verwendung der ermittelten Bewegungsgrößen und dem Modell der bewegten Ebene eine Rücktransformation jedes Bildpixels durchgeführt, so daß bei der Bildung eines Differenzbildes zwischen dem bewegungskompensierten Bild und dem tatsächlich aufgenommenen Bild, dreidimensionale Strukturen, die ja das Ebenenmodell verletzen, deutlich hervortreten und somit auf potentielle Hindernisse hinweisen. Es hat sich gezeigt, daß Fehlmessungen in den Verschiebungsvektoren, welche beispielsweise durch periodische Strukturen auf der Ebene auftreten können, die Bewegungsschätzung und die Hinderniserkennung empfindlich stören. Diese statistischen Ausreißer bewirken, daß trotz der Verwendung von robusten Schätzmethoden, eine stabile Hinderniserkennung nur durch die Einbeziehung von Vorwissen über die Art der Bewegung des Fahrzeugs realisiert werden kann. Weiterhin führen die Komplexität des Verfahrens und die damit verbundenen hohen Anforderungen an die Rechenleistung der eingesetzten Hardware dazu, daß die für die praktische Anwendbarkeit so wichtige Echtzeitfähigkeit des Verfahrens bisher nur für Eingangsbilder mit geringer Auflösung ermöglicht werden konnte. Speziell für die Bildverarbeitung hat sich das neue Paradigma der Zellularen Neuronalen Netzwerke als außerordentlich leistungsfähig erwiesen. Neben der extrem hohen Verarbeitungsgeschwindigkeit von CNN-basierten schaltungstechnischen Realisierungen zeichnen sie sich durch eine hohe Robustheit bei vertauschten oder fehlerhaften Eingangsdaten aus. Für nahezu jedes aktuelle Problem der Bildverarbeitung wurde bisher ein geeignetes CNN bestimmt. Auch für komplexe Aufgabenstellungen aus der Bildverarbeitung, wie beispielsweise die Texturklassifikation, die Spurverfolgung oder die Gewinnung von Tiefeninformation konnten bereits CNN-Programme implementiert und schaltungstechnisch verwirklicht werden. So konnte auch im zweiten Teil dieser Arbeit gezeigt werden, daß die einzelnen Schritte der Hinderniserkennung aus monokularen Bildsequenzen ebenfalls unter Verwendung eines CNN realisierbar sind. Es wurde demonstriert, daß für die Generierung eines Markantheitsbildes bereits ein Standard-CNN mit linearer Kopplungsfunktion und der Nachbarschaft r=1 verwendet werden kann. Das rechenaufwändige statistische Verfahren der Markantheitsbildberechnung kann somit durch einen einzigen CNN-Verarbeitungsschritt durchgeführt werden. Weiterhin wurde im Rahmen dieser Arbeit gezeigt, daß auch der folgende, rechenintensive Schritt des statistischen Verfahrens der Hinderniserkennung, nämlich die Verschiebungsvektorschätzung, mittels CNN verwirklicht werden kann. Hierzu sind CNN mit polynomialen Kopplungsfunktionen und der Nachbarschaft r=1 notwendig. Bei den durchgeführten Untersuchungen hat sich herausgestellt, daß die CNN-basierten Verarbeitungsschritte den statistischen Methoden in den Punkten Robustheit und Verarbeitungsgeschwindigkeit deutlich überlegen sind. Abschließend wurde in dieser Arbeit gezeigt, daß mit Hilfe von CNN sogar eine direkte Hinderniserkennung aus monokularen Bildsequenzen - ohne den Umweg über die Bestimmung der Verschiebungsvektoren und der Bewegungsgrößen - realisiert werden kann. In dem vorgestellten Verfahren wird nach zwei Vorverarbeitungsschritten, die Hinderniserkennung in einem einzigen Schritt unter Verwendung eines CNN mit polynomialen Zellkopplungsgewichten vom Grade D=3 und der Nachbarschaft r=2 durchgeführt. Das vorgeschlagene Verfahren führt zu einer wesentlichen Vereinfachung der Hinderniserkennung in monokularen Bildsequenzen, da die Bewegegungsschätzung aus dem statistischen Verfahren nicht länger notwendig ist. Die Umgehung der expliziten Bewegungsschätzung hat weiterhin den Vorteil, daß der Rechenaufwand stark reduziert wurde und durch den Wegfall der Verschiebungsvektorschätzung und dem damit verketteten Problem der Ausreißer, ist das vorgestellte CNN-basierte Verfahren außerdem sehr robust. Die ersten Resultate, die unter Verwendung von synthetischen und natürlichen Bildsequenzen erhalten wurden, sind überaus vielversprechend und zeigen, daß CNN ausgezeichnet zur Verarbeitung von Videosequenzen geeignet sind

    A Note on Error Metrics and Optimization Criteria in 3D Vision

    No full text
    All computer vision algorithms applied to real data have to deal with input data corrupted by errors, which leads to the necessity to select an appropriate loss function and to minimize it. The fact that the errors in di#erent components can be of individual size or even be correlated, makes a statistical analysis of an algorithm absolutely necessary. A statistically justified loss function can only be obtained by a statistical consideration of errors, or, in other words, optimization criteria that are not statistically justified (i.e. criteria that use a wrong error metric) may result in drastic failure of an algorithm in the presence of errors

    Estimating Consistent Motion From Three

    No full text
    The main goal of this paper is to introduce methods for three-view motion analysis that do not need threefold correspondences in the image planes as the well-known trifocal tensor methods do. With this characteristic, the proposed method is a practically very advantageous approach for (ego-)motion analysis and structure from motion
    corecore